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a b s t r a c t

Epidermal growth factor receptor (EGFR) is an important anti-cancer therapy target that is applicable
to many cancer types. We had previously reported the screening and discovery of a novel peptide ligand
against EGFR named GE11. It was shown to bind to EGFR competitively with EGF and mediate gene delivery
to cancer cells with high-EGFR expression. In this study, we conjugated GE11 on to liposome surface
and examined their binding and distribution to EGFR expressing cancer cells in vitro and in vivo using
fluorescence imaging techniques. GE11 liposomes were found to bind specifically and efficiently to EGFR
EGFR
Peptide ligand
T
L

high-expressing cancer cells. In vivo in H1299 xenograft mouse model, GE11 liposomes also extravasated
and accumulated into the tumor site preferentially, and demonstrated better targeting and drug delivery
capacities.
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. Introduction

Liposomes have been increasingly developed as preferred drug
arriers in anti-tumor treatments (Bangham et al., 1965; Bangham,
968). PEG-conjugated liposomes can somewhat escape from the
apture of reticuloendothelial system to circulate longer than con-
entional liposomes. So they have a tendency to traverse leaky
ascular and passively accumulate in tumor tissues based on the so-
alled enhanced permeability and retention (EPR) effect (Allen et
l., 1991; Lasic et al., 1991; Woodle and Lasic, 1992; Wu et al., 1993).
uch stealth liposome formulations had been used to deliver anti-
ancer drugs and attained significant therapy effect (Mayhew et
l., 1992; Vaage et al., 1992). In addition, modification of liposomes
ith antibody or antibody fragment, or small molecular ligands
as also been developed a promising strategy for tumor targeting.
rug-loaded liposomes with active targeting were shown to have

ore enhanced anti-cancer efficacy (Lopes de Menezes et al., 1998;
sai et al., 2002; Gabizon et al., 2003).

The epidermal growth factor receptor (EGFR) is a receptor tyro-
ine kinase over-expressed on many human cancer cells surface.
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t is regarded as a significant target for tumor-targeted therapy.
GFR-targeted immunoliposomes were shown to promote efficient
ntracellular delivery of doxorubicin to tumor cells, and there-
ore resulted in superior anti-tumor effects in a series of animal
enograft models (Mamot et al., 2003, 2005, 2006). In addition
o antibodies and antibody fragments, peptide ligands having
pecific interaction with receptors over-expressing in tumor or
umor neovasculature were utilized to direct chemotherapeutics,
roteins, and gene constructs (Kok et al., 2002). Some peptides
uch as the RGD-derived peptides were widely used (Takikawa
t al., 2000; Schiffelers et al., 2003; Maeda et al., 2004). Many
ther studies had attempted to find other effective ligands for
arious targets based on phage display screening, comparative
equence/structure analysis and so on (Morpurgo et al., 2002; Wu
t al., 2004). We had previously reported the screening of a noval
eptide ligand (GE11) for EGFR (Li et al., 2005). It was shown
o bind effectively to EGFR over-expressing cancer cells-mediated
arget specific gene transfection when conjugated to a PEI vec-
or.

In this study, we used this peptide ligand to construct an active

argeting liposome drug delivery system towards EGFR positive
ancer cells. We also examined the liposome distribution in vivo in
umor bearing mice. The aim of this study is to explore the feasibil-
ty of using peptide ligand-directed liposome as target therapeutics
or cancer.

http://www.sciencedirect.com/science/journal/03785173
mailto:yhxu@sjtu.edu.cn
dx.doi.org/10.1016/j.ijpharm.2008.07.012
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into the liposome to examine its in vivo distribution in xenograft
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. Materials and methods

.1. Materials

The sequence of the peptide GE11 is YHWYGYTPQNVI as
escribed in reference Li et al. (2005). It was custom synthesized by
L Biochem Ltd. (shanghai). Its structure and purity were confirmed
y HPLC and MS. The irrelated peptide D11 is also synthesized for
ontrol. Recombinant hEGF was a gift from Dr. Li Z.P. (State Key
aboratory of Molecular Biology, Institute of Biochemistry and Cell
iology, Chinese Academy of Sciences).

The lipid 1,2-distearoyl-sn-glycero-3-phosphoethanolamine
DSPE) was from Avanti Polar Lipids (AL, USA). Eggphosphatidyl-
holine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine–N-
methoxy(polyethylene glycol)2000] (DSPE–PEG2000), and 1,2-
istearoyl-sn-glycero-3-phosphoethanolamine–N-[maleimide
polyethylene glycol)2000] (DSPE–PEG2000–Mal) were from NOF
orporation (Japan). Cholesterol was from Sigma. LissamineTM rho-
amine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine
rhodamine DHPE) and N-(fluorescein-5-thiocarbamoyl)-1,2-
ihexadecanoyl-sn-glycero-3-phosphoethanolamine (fluorescein
HPE) were from Invitrogen Corporation (USA). N-Succinimidyl
-(2-pyridyldithio) propionate (SPDP) and tris(2-carboxyethyl)
hosphine (TCEP) were from Pierce Biotechnology, Inc. (USA).
y5.5 mono NHS ester was supplied by GE Healthcare (USA).
oxorubicin hydrochloride was from Shenzhen Main Luck Phar-
aceuticals Inc. MTT was from Shanghai Pufei Biotechnology Co.,

td. All other chemicals in analytical grade were obtained from
inopharm Chemical Reagent Co., Ltd. (Shanghai, China).

.2. Cell lines and animal models

The human non-small cell lung carcinoma cell line H1299 and
he human lung adenocarcinoma cell line SPCA1, both express-
ng EGFR were used in this study. The cells were cultured in
PMI1640 culture medium, supplemented with 10% fetal bovine
erum (Gibco) at 37 ◦C in humidified atmosphere containing 5%
O2.

H1299 xenograft mouse models were prepared by the animal
xperimental center of Shanghai Cancer Institute. They were used
or in vivo experiments about 3–4 weeks after tumor cell inocula-
ion (tumor size about 5 mm diameter), and humanely sacrificed
fterwards. The animal study protocols were approved by the Ani-
al Study Committee of Shanghai Jiaotong University School of

harmacy.

.3. Liposomes preparation

Liposomes were prepared using the thin filmhydration and
xtrusion method containing EPC:CHOL:DSPE–PEG at 10:5:0.5
olar ratios. The size distribution of the liposomes were routinely

xamined by photon correlation spectroscopy (PCS) using a Zeta-
izer3000H (Malvern Instruments).

For fluorescence labeled liposomes, the fluorescent lipids (rho-
amine DHPE, fluorescein DHPE or Cy5.5 DSPE) were incorporated
t about 0.5–0.64 mol% total lipids.

The doxocubicine-loaded liposome was prepared by the pH
oading method (Mayer et al., 1990; Haran et al., 1994). Briefly, dry
ipids were hydrated in 125 mM ammonium sulfate, 20 mM HEPES
uffer at pH 4.0, followed by extrusion to reach 100 nm particle

ize. The solution was then dialyzed in HEPES buffer (pH 7.2) and
iluted with 20 mM HEPES, 150 mM NaCl (pH 7.5) to the required
oncentration. Doxorubicin was added and incubated for at 60 ◦C
or 10 min. Encapsulation efficiencies of over 90% were consistently
btained.

t

o
i
f
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.4. Conjugation of ligands to maleimide–PEG–DSPE and
ncorporation into liposomes

For the synthesis of ligand–PEG–DSPE molecule (Roberts et
l., 2002), GE11 or EGF was dissolved in PBS–EDTA and mixed
t 1:1.2 molar ratio with N-succinimidyl 3-(2-pyridyldithio) pro-
ionate dissolved in DMSO. After 1 h in room temperature, the
ixture was lyophilized, and dissolved in the solution contain-

ng tris(2-carboxyethyl) phosphine under nitrogen to expose the
SH group. The thiolated protein or peptide was then added
o the MAL–PEG2000–DSPE micelle solution at 5:1 molar ratio
hile maintaining mixing under nitrogen at 10 ◦C overnight. HPLC

nalysis confirmed that most of MAL–PEG–DSPE molecules were
onjugated with the ligands after such reactions.

Ligand-conjugated lipids were transferred into preformed lipo-
omes based on the procedure developed by Ishida et al. with minor
odifications (Ishida et al., 1999). Briefly, ligand–PEG–DSPE solu-

ion was added into the preformed liposome solution at 9:100
olar ratio and incubated at 60 ◦C for 1 h (50 ◦C and 30 min for dox-

rubicine containing liposomes). The solutions were then dialyzed
gainst PBS using SnakeSkinTM Pleated Dialysis Tubing, 10,000
WCO (Pierce Chemical Company) for 4 h to remove unconjugated

igands. Non-targeted liposomes were prepared similarly by sub-
tituting ligand-conjugated lipid with mPEG2000–DSPE and used
s controls.

.5. In vitro cell binding and drug delivery studies

EGFR high-expressing H1299 cells were seeded at 2 × 105 cm−2

ensity on 35 mm-diameter culture dishes and cultured in
PMI1640 medium overnight. After the cell culture reached about
0% confluence, ligand-conjugated rhodamine labeled liposomes
ere diluted in RPMI1640 and added into the culture dish at the
ose of 0.2 mg total lipids per well. In the binding competition
xperiments, 50-fold molar excess of free GE11 or EGF were added
nto the medium 2 h before the addition of ligand-conjugated lipo-
omes. After 4 h incubation at 37 ◦C, the cells were washed six times
ith PBS (pH 7.4) to remove unbound liposomes. The bound fluo-

escent liposomes were visualized using Confocal Laser Scanning
icroscope (CLSM, Zeiss LSM 510, Germany).
Doxorubicin-loaded liposomes were used to test the drug deliv-

ry efficiency of the targeted liposomes to EGFR high-expressing
1299 and SPCA1 cells. Free doxorubicin, GE11-modified dox-
rubicin liposome and non-targeting doxorubicin liposomes were
dded into cells for 2 h at 37 ◦C. The cells were then washed and
et grown for another 48 h. The cell viabilities after different treat-

ents were determined using a MTT assay. IC50 were calculated
ith ±95% confidence intervals (CIs) using Micromath Scientist

.0.

.6. In vivo distribution and targeting study

The peptide itself was labeled with the near infrared dye Cy5.5
y reacting its amine group with the succinimidyl ester of Cy5.5.
he fluorescent peptides were then injected through the tail vein
n H1299 xenograft mice and imaged using an Optix in vivo fluo-
escence imaging system (GE Health).

Similarly, DSPE was also labeled with Cy5.5 and incorporated
umor bearing mice.
At least three mice were included in each group and series

f images were taken at various time points after injection. The
mages were then processed using the fluorescence lifetime gating
or Cy5.5 to remove most autofluorescent interferences.
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Table 1
The particle size distribution of GE11-conjugated liposomes

Liposome formulation Preformed liposome
size (nm)

Ligand-conjugated
liposome size (nm)

Rhodamine liposome 116.3 ± 11.9 125.7 ± 15.5
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ITC liposome 127 ± 7.2 133.3 ± 17.0
oxorubicin liposome 134 ± 32.6 178.3 ± 23.7
y5.5-labeled liposomes 115 ± 10.3 158.4 ± 9.6

. Results

.1. Preparation of peptide ligand-conjugated liposomes

All the liposomes were prepared and sized by extrusion through
00 nm membranes. The ligand-conjugated DSPE–PEG2000
olecules were then inserted into preformed liposomes based

n the method developed by Ishida et al. (Ishida et al., 1999). The
rocess had little disturbance to the integrity of the liposomes.
he liposome size distribution before and after the insertion were
hown in Table 1.

.2. Binding and endocytosis of ligand-modified liposomes by
GFR expressing cells

Both EGF- and GE11-modified liposomes and control
PEG–DSPE liposomes were added to cultured EGFR express-
ng H1299 cells. All liposome formulations has total 9%
igand–PEG–DSPE and mPEG–DSPE combined. For EGF-modified
iposomes, the binding was optimum with 6% of EGF–PEG–DSPE
plus 3% mPEG–DSPE). For GE11-modified liposomes, the binding

3

D

ig. 1. Fluorescence microscopy studies of ligand-directed rhodamine liposome (RL) bind
iposomes and non-targeted liposome to H1299 cells at 37 ◦C: (a) EGF liposomes; (b) GE11 l
o H1299 at 37 ◦C or 4 ◦C in the presence of 50× mole excess free ligands: (a) binding at 37
ith excess free GE11. Scale bar is 20 �m.
armaceutics 363 (2008) 155–161 157

as the optimum with 9% of GE11–PEG–DSPE. The representative
onfocal fluorescence microscopy images were shown in Fig. 1A-a
nd b. In contrast, the control liposome with 9% mPEG–DSPE had
ery limited binding (Fig. 1A-c).

Adding free EGF to the GE11 liposome bound cells diminished
he fluorescence significantly (Fig. 1B-a). The fluorescence remain-
ng was mostly inside cells, presumably in endocytic vesicles. The
-stack scan of GE11 liposome bounded cells also suggested active
ndocytosis of GE11 liposomes (Fig. 2). We also examined GE11
iposome binding at 4 ◦C (Fig. 1B-b). As expected, the fluorescences

ere now only seen on cell surfaces. Similarly, the binding fluores-
ence of GE11 liposomes could be largely competed off by excess
nlabeled free GE11 (Fig. 1B-c).

.3. In vitro doxorubicin delivery studies

For cytotoxicity studies, doxorubicin-loaded liposomes was con-
ugated by peptide ligand GE11 for targeted delivery to EGFR
igh-expressing cells. We detected the different cell killing effects
f free doxorubicin, targeted and non-targeted liposomal doxoru-
icin using MTT assay after 4 h treatment. IC50 were calculated
ased on the MTT data and listed in Table 2. In both H1299 and
PCA1 cell lines, the GE11-modified liposomal doxorubicin showed
uch higher cytotoxic efficiency than mPEG liposomes, although

he IC50s were both a bit lower than free doxorubicin which could
eadily traverses cell membranes in vitro.
.4. In vivo peptide ligand-mediated tumor targeting

Cy5.5-labeled GE11 peptides, Cy5.5-labeled unrelated peptide
11 and free Cy5.5 dye molecules were injected though tail vein

ing to EGFR high-expressing H1299 cells. Panel (A) Binding of EGF, GE11-targeted
iposomes; (c) control liposomes. Panel (B) Competition of GE11-targeted liposomes
◦C with excess free EGF; (b) binding at 4 ◦C without free ligand; (c) binding at 4 ◦C
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ig. 2. Internalization of GE11-conjugated liposome by H1299 cells. Eight silices flu
can mode of confocal fluorescence microscope. Scale bar is 20 �m.

nto H1299 xenograft tumor bearing mice and imaged for fluo-
escence distribution at various time points. In these groups, the
uorescence signals were the strongest in the kidney and bladder,
s their main excretion organ. We had to limit the scanning area to
he tumor and surrounding areas for avoid the interference from
idney and bladder. As shown in Fig. 3, only in the animals injected
ith GE11–Cy5.5, fluorescence signals were shown to accumulate

n tumor tissues from 12 to 24 h after the injection.
Cy5.5 DSPE liposomes were modified with GE11 and injected
hrough the tail vein into H1299 tumor bearing mice. The tumor
earing areas were scanned at various time points after injection.
he fluorescence intensity images were shown in Fig. 4 after nor-
alization of the whole body fluorescence using the eXplore Optix
ptiView analysis software. Both the GE11-modified liposomes and

able 2
C50 of drug in EGFR high-expressing cells

C50 (�g/ml) Doxorubicin GE11 doxorubicin liposome Doxorubicin liposome

1299 2.68 ± 0.92 3.25 ± 0.37 9.85 ± 1.7
PCA1 4.55 ± 1.06 6.89 ± 1.23 42.75 ± 12.81
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ence images from the top to the bottom of the cells were shown using the Z-stack

he control mPEG–DSPE liposomes showed distribution and accu-
ulation at the tumor site. But the fluorescences in GE11 liposome

njected mice were relatively stronger and lasted longer.

. Discussion

For targeted drug delivery towards tumor, small molecule lig-
nds, peptides, antibody and antibody fragments had all been used
Ahmad et al., 1993; Woodle et al., 2001; Kok et al., 2002; Gabizon
t al., 2003; Schiffelers et al., 2003; Pastorino et al., 2006; Saul et
l., 2006; Oba et al., 2007). EGFR is an important target for its over-
xpressed in many cancers (Schmidt et al., 1997; Lutsenko et al.,
002; Mamot et al., 2003). In our previous study (Li et al., 2005),
eptide GE11 was identified as a novel ligand with high affinity
owards EGFR. Radiolabeled peptide was found to have broad tis-
ue distribution in vivo, with some preferential accumulation in

umor. But the distribution pattern was only studied at two-time
oint: 0.5 and 4 h after injection, because of the radioactivity assay

imitation. In this study, we used near infrared fluorescence label
nd in vivo fluorescence imaging techniques, which enabled us to
tudy the distribution pattern over time on the same animal. The
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ig. 3. The fluorescence image of Cy5.5-labeled GE11, Cy5.5-labeled unrelated pep
4 h after injection.

ethod is very straightforward and the data sets had much less
ariability.

Furthermore, we used the peptide ligand GE11 to modify a
idely used drug delivery vehicle (liposomes) and studied its bind-

ng and uptake by tumor cell and tumor tissue in vitro and in vivo.
o conjugate the peptide ligand to liposome surfaces, we adopted
he post-insertion method developed by Ishida et al. (Ishida et
l., 1999). The peptide ligand was coupled to the distal end of
he polyethylene glycol chain of the lipid, and then inserted into
he preformed liposome membrane after incubation. The method
s very efficient and reliable with high-ligand loading efficiencies
Hansen et al., 1995; Bohl Kullberg et al., 2002) and preserved stabil-
ty of doxorubicin-loaded liposomes (Iden and Allen, 2001; Moreira
t al., 2002). The linkage of the ligands to the distal PEG ends
elped to minimize the sterical interference when binding to target
ells (Hansen et al., 1995; Maruyama et al., 1995). But the ligand
nd mPEG density presented were found to be critically impor-
ant. In our studies, we optimized the ligand and mPEG density
o target cells and eliminate nonspecific binding. 9% molar percent

otal PEG–lipid was found to be preferable for H1299 cells, and 6%
f EGF–PEG–lipids and 9% of GE11–PEG–lipids resulted maximum
inding in vitro. The optimum conditions may vary among differ-
nt tumor models and between in vitro and in vivo environments
oo. In this study, we adopted the same ligand density formulation

o
t
t
a
o

11 and Cy5.5 in tumor bearing mice. Images shown were taken at 1, 6, 12, 24 and

etermined in vitro in animal studies. In reality, it would need to
e further optimized.

To examine the in vivo distribution of the peptide and peptide-
odified liposomes after tail vein injection, many methods had

een used, including radiolabel and radioactivity counting, histol-
gy and immunohistochemistry, and reporter drug or reporter gene
ssays. Small animal in vivo fluorescence imaging is a newly devel-
ped tool for monitoring the biodistribution in live animals. Cy5.5
s one of the most commonly used dye because of its superior tissue
enetration and low background (Ntziachristos et al., 2003; Cheng
t al., 2006). The main advantage of the in vivo imaging technique
s that it allows continuous monitoring of the same live animals
hroughout the course of the study.

In those mice injected intravenously by Cy5.5-labeled peptide
E11, there was specific fluorescent accumulation in tumor region

rom 1 to more than 54 h after injection, compared to Cy5.5-
abeled unrelated peptide D11 and Cy5.5 dye itself which was
uickly showed up in the kidney and bladder region and eliminated.
he distribution pattern was a bit different for liposomes, with

r without the ligand GE11. Both liposome formulations showed
he so-called enhanced permeability and retention effect. Because
he liposome sizes were close to the vascular opening (Yuan et
l., 1995; Hobbs et al., 1998), they could leak preferably through
ut the tumor vasculature. The EPR effect would be similar with
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ig. 4. The fluorescence images of ligand GE11-directed liposome distribution and a
he mouse, fluorescence images of tumor site taken at 1, 6, 12, 24, 48 and 72 h after

r without the ligand, because it is mainly a particle size effect.
herefore we see fluorescence accumulation in the tumor region
n both mPEG- and ligand-modified sample. But the extend and
uration of the tumor accumulation could be different. Specific
inding to the cancer cell and rapid internalization would def-

nitely help drug delivery and efficacy (Wu et al., 1993; Tanaka
t al., 2004; Kirpotin et al., 2006). As shown in Fig. 4, this is
xactly the case for GE11 liposomes, as compared to mPEG lipo-
omes.

In summary, we used fluorescence imaging techniques to exam-
ne peptide ligand GE11-directed binding to EGFR expression cancer
ells in vitro and in vivo. We demonstrated that the GE11 peptide is
n effective EGFR ligand and can mediate targeted liposome deliv-
ry to EGFR positive tumors in vivo after tail vein injection. Further
nvestigations on the therapeutic efficacies of this delivery system
n various preclinical models are undergoing.
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